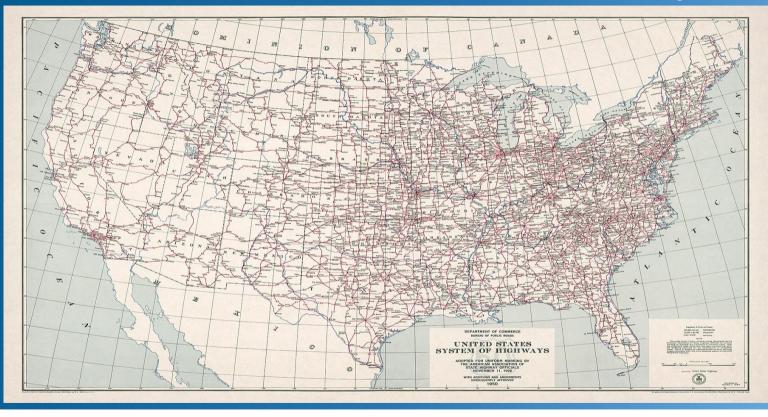


$\circ \circ \circ$


Turning the Nation's road infrastructure into a network of stormwater treatment systems

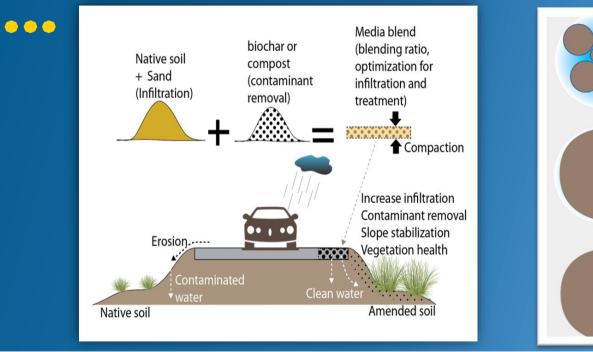
Renan Valenca, *Ph.D.* Candidate Dept. of Civil & Environmental Engineering *revalenca*@ucla.edu

Nation's road as a network of stormwater treatment systems

Compaction Study - Challenges

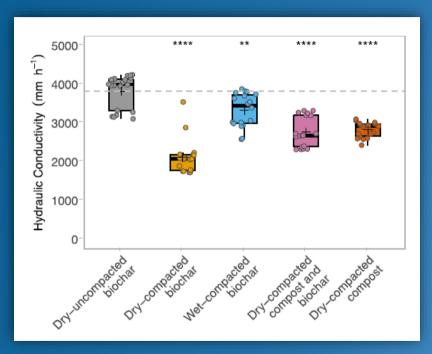
$\bigcirc \bigcirc \bigcirc$

Selection of appropriate size range for compaction minimization and pollutant removal


<u>Cost-effective</u> method for prediction of clogging of the biofilter

CALTRANS: Next-Generation Green Infrastructure for Stormwater Treatment

K_H: Hydraulic conductivity How fast water infiltrates through filter layer.


K Decay : Degradation of pollutant How fast soil micro-organisms degrade attached pollutants.

Biochar helps infiltration (K_H)

 $\bullet \bullet \bullet$

Science of The Total Environment Volume 735, 15 September 2020, 139180

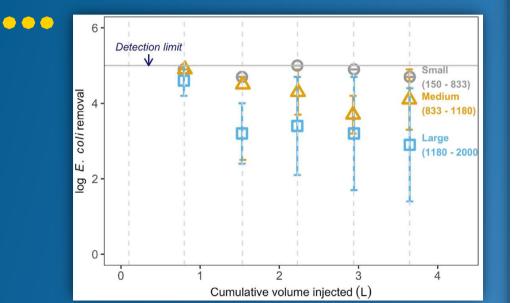
Compaction conditions affect the capacity of biochar-amended sand filters to treat road runoff

Maryam Ghavanloughajar ª, Renan Valenca ª, Huong Le ª, Merrick Rahman ª, Annesh Borthakur ª, Sujith Ravi ^b, Michael K. Stenstrom ª, Sanjay K. Mohanty ª R

Show more 🗸

https://doi.org/10.1016/j.scitotenv.2020.139180

Get rights and content


Highlights

- Wet-compacted columns released more biochar particles than drycompacted columns.
- · Net initial loss of biochar particles due to compaction was insignificant.
- Compaction decreased hydraulic conductivity, but the presence of water reduced the impact.
- Compaction increased stormwater interaction with filter media.
- Wet-compacted columns removed more *E. coli* than dry-compacted columns.

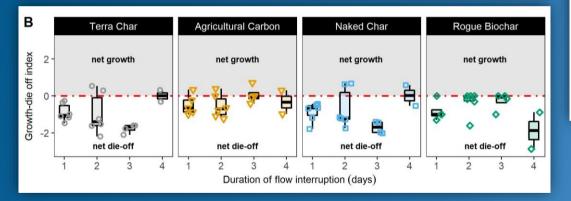
Biochar removes pollutants (K_{Sorption})

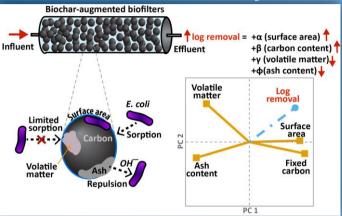
Size-dependent biochar breaking under compaction: Implications on clogging and pathogen removal in biofilters ★

Huong Le *, Renan Valenca *, Sujith Ravi $^{\rm b},$ Michael K. Stenstrom *, Sanjay K. Mohanty * R \boxtimes Show more \checkmark

https://doi.org/10.1016/j.envpol.2020.115195

Get rights and content


Highlights


- Most of broken biochar particles during compaction were trapped in biofilters.
- Dominant biochar breaking process was disintegration, not abrasion.
- Disintegration was prominent when biochar particle size was small.
- Exponential model predicted the clogging of compacted biofilters.
- *E. coli* removal and clogging rate was highest in the filters with smallest biochar.

Biochar affects microbial community (K_{Decay})

$\bigcirc \bigcirc \bigcirc$

Valenca, R., Mohanty, S. K. et al. (2020) Biochar selection for Escherichia coli removal in stormwater biofilters. *Journal of Environmental Engineering, just accepted.*

Summary

$\bullet \bullet \bullet$

In compacted soil, Biochar helps:

- ✓ Infiltrate water
- ✓ Adsorb pollutant
- ✓ **Degrade** pollutant

<u>Biochar</u> could transform the roadside soil into a natural filter!

OBRIGADO! THANK YOU!

 $\bigcirc \bigcirc \bigcirc \bigcirc$

UCLA SEALab

Renan Valenca <u>revalenca@ucla.edu</u> <u>https://renanvalenca.netlify.app/</u>

> Principal Investigator: Sanjay K. Mohanty <u>mohanty@ucla.edu</u>

www.sites.google.com/g.ucla.edu /uclasealab

